Taking too long? Close loading screen.
Connect with us

Science

Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry

Published

on

Mapping primordial reaction networks

Chemists seeking to understand the origins of life have published a wide range of reactions that may have yielded the building blocks of proteins, nucleic acids, and lipids from simple precursors. Wołos et al. scoured the literature to document each such reaction class and then wrote software that applied the reactions first to the simplest compounds such as cyanide, water, and ammonia, and then iteratively to each successive generation of products. The resulting network predicted a variety of previously unappreciated routes to biochemically relevant compounds, several of which the authors validated experimentally.

Science, this issue p. eaaw1955

Structured Abstract

INTRODUCTION

Although hundreds of organic reactions have been validated under consensus prebiotic conditions, we still have only a fragmentary understanding of how these individual steps combined into complete synthetic pathways to generate life’s building blocks, which other abiotic molecules might have also formed, how independent reactions gave rise to chemical systems, and how membranes encapsulating these systems came into being. Answering such questions requires consideration of very large numbers of possible synthetic pathways. Starting with even a few primordial substrates—e.g., H2O, N2, HCN, NH3, CH4, and H2S—the number of prebiotically synthesizable molecules grows rapidly into the tens of thousands. Detailed analysis of this space and its synthetic connectivity may be beyond the cognition of individual chemists but can be performed by smart computer algorithms.

RATIONALE

We harnessed the power of computer-assisted organic synthesis to map the network of molecules that are synthesizable from basic prebiotic feedstocks. This was done by encoding currently known prebiotic reactions in a machine-readable format, augmenting these reaction transforms with information about incompatible groups and reaction conditions, and then applying them iteratively to a set of basic prebiotic substrates. The reaction network thus created was queried by algorithms to identify complete synthetic routes as well as those tracing reaction systems—notably, reaction cycles. All calculations were supported by a software application that is freely available to the scientific community.

RESULTS

We demonstrate that this network comprises more abiotic molecules than biotic molecules. The biotic compounds differ from the abiotic compounds in several ways: They are more hydrophilic, more thermodynamically stable, and more balanced in terms of the hydrogen bond donors and acceptors they contain and are synthesizable along routes with fewer changes of conditions. The network contains not only all known syntheses of biotic compounds but also previously unidentified routes, several of which (e.g., prebiotic syntheses of acetaldehyde and diglycine, as well as malic, fumaric, citric, and uric acids) we validated by experiment. We also demonstrate three notable forms of chemical emergence: (i) that the molecules created within the network can themselves enable new types of prebiotic reactions; (ii) that within just a few synthetic generations, simple chemical systems (including self-regenerating cycles) begin to emerge; and (iii) that the network contains prebiotic routes to surfactant species, thus outlining a path to biological compartmentalization. We support these conclusions with experimental results, establishing previously undescribed prebiotic reactions and entire reaction systems—notably, a self-regenerating cycle of iminodiacetic acid.

CONCLUSION

Computer-generated reaction networks are useful in identifying synthetic routes to prebiotically relevant targets and are indispensable for the discovery of prebiotic chemical systems that are otherwise challenging to discern. As our network continues to grow by means of crowd-sourcing of newly validated prebiotic reactions, it will allow continued simulation of chemical genesis, beginning with molecules as simple as water, ammonia, and methane and leading to increasingly complex targets, including those of current interest in the chemical and pharmaceutical industries.

Network of prebiotic chemistry.

Computer simulation of plausible prebiotic reactions creates a network of molecules that are synthesizable from prebiotic feedstocks and establishes multiple unreported—but now experimentally validated—syntheses of prebiotic targets as well as self-regenerating cycles. In this schematic illustration, light blue nodes represent abiotic molecules, dark blue nodes represent molecules along newly discovered prebiotic syntheses of uric and citric acids, and red nodes represent other biotic molecules.

Abstract

The challenge of prebiotic chemistry is to trace the syntheses of life’s key building blocks from a handful of primordial substrates. Here we report a forward-synthesis algorithm that generates a full network of prebiotic chemical reactions accessible from these substrates under generally accepted conditions. This network contains both reported and previously unidentified routes to biotic targets, as well as plausible syntheses of abiotic molecules. It also exhibits three forms of nontrivial chemical emergence, as the molecules within the network can act as catalysts of downstream reaction types; form functional chemical systems, including self-regenerating cycles; and produce surfactants relevant to primitive forms of biological compartmentalization. To support these claims, computer-predicted, prebiotic syntheses of several biotic molecules as well as a multistep, self-regenerative cycle of iminodiacetic acid were validated by experiment.

Source

Continue Reading
Advertisement
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

Too bright to breed

Published

on

Night light from coastal cities overpowers natural signals for coral spawning from neighboring reefs.

PHOTO: NOKURO/ALAMY STOCK PHOTO

Most coral species reproduce through broadcast spawning. For such a strategy to be successful, coordination has had to evolve such that gametes across clones are released simultaneously. Over millennia, lunar cycles have facilitated this coordination, but the recent development of bright artificial light has led to an overpowering of these natural signals. Ayalon et al. tested for the direct impact of different kinds of artificial light on different species of corals. The authors found that multiple lighting types, including cold and warm light-emitting diode (LED) lamps, led to loss of synchrony and spawning failure. Further, coastal maps of artificial lighting globally suggest that it threatens to interfere with coral reproduction worldwide and that the deployment of LED lights, the blue light of which penetrates deeper into the water column, is likely to make the situation even worse.

Curr. Biol. 10.1016/j.cub.2020.10.039 (2020).

Source

Continue Reading

Science

SpaceX launches Starlink app and provides pricing and service info to early beta testers

Published

on

SpaceX has debuted an official app for its Starlink satellite broadband internet service, for both iOS and Android devices. The Starlink app allows users to manage their connection – but to take part you’ll have to be part of the official beta program, and the initial public rollout of that is only just about to begin, according to emails SpaceX sent to potential beta testers this week.

The Starlink app provides guidance on how to install the Starlink receiver dish, as well as connection status (including signal quality), a device overview for seeing what’s connected to your network, and a speed test tool. It’s similar to other mobile apps for managing home wifi connections and routers. Meanwhile, the emails to potential testers that CNBC obtained detail what users can expect in terms of pricing, speeds and latency.

The initial Starlink public beta test is called the “Better than Nothing Beta Program,” SpaceX confirms in their app description, and will be rolled out across the U.S. and Canada before the end of the year – which matches up with earlier stated timelines. As per the name, SpaceX is hoping to set expectations for early customers, with speeds users can expect ranging from between 50Mb/s to 150Mb/s, and latency of 20ms to 40ms according to the customer emails, with some periods including no connectivity at all. Even with expectations set low, if those values prove accurate, it should be a big improvement for users in some hard-to-reach areas where service is currently costly, unreliable and operating at roughly dial-up equivalent speeds.

Image Credits: SpaceX

In terms of pricing, SpaceX says in the emails that the cost for participants in this beta program will be $99 per moth, plus a one-time cost of $499 initially to pay for the hardware, which includes the mounting kit and receiver dish, as well as a router with wifi networking capabilities.

The goal eventually is offer reliably, low-latency broadband that provides consistent connection by handing off connectivity between a large constellation of small satellites circling the globe in low Earth orbit. Already, SpaceX has nearly 1,000 of those launched, but it hopes to launch many thousands more before it reaches global coverage and offers general availability of its services.

SpaceX has already announced some initial commercial partnerships and pilot programs for Starlink, too, including a team-up with Microsoft to connect that company’s mobile Azure data centers, and a project with an East Texas school board to connect the local community.

Source

Continue Reading

Science

Erratum for the Report “Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances” by R. Van Klink, D. E. Bowler, K. B. Gongalsky, A. B. Swengel, A. Gentile, J. M. Chase

Published

on

S. Rennie, J. Adamson, R. Anderson, C. Andrews, J. Bater, N. Bayfield, K. Beaton, D. Beaumont, S. Benham, V. Bowmaker, C. Britt, R. Brooker, D. Brooks, J. Brunt, G. Common, R. Cooper, S. Corbett, N. Critchley, P. Dennis, J. Dick, B. Dodd, N. Dodd, N. Donovan, J. Easter, M. Flexen, A. Gardiner, D. Hamilton, P. Hargreaves, M. Hatton-Ellis, M. Howe, J. Kahl, M. Lane, S. Langan, D. Lloyd, B. McCarney, Y. McElarney, C. McKenna, S. McMillan, F. Milne, L. Milne, M. Morecroft, M. Murphy, A. Nelson, H. Nicholson, D. Pallett, D. Parry, I. Pearce, G. Pozsgai, A. Riley, R. Rose, S. Schafer, T. Scott, L. Sherrin, C. Shortall, R. Smith, P. Smith, R. Tait, C. Taylor, M. Taylor, M. Thurlow, A. Turner, K. Tyson, H. Watson, M. Whittaker, I. Woiwod, C. Wood, UK Environmental Change Network (ECN) Moth Data: 1992-2015, NERC Environmental Information Data Centre (2018); .

Source

Continue Reading

Trending