Taking too long? Close loading screen.
Connect with us

Science

Comprehensive quantification of fuel use by the failing and nonfailing human heart

Published

on

Metabolomics, at the heart

With heart failure a leading cause of death, a better understanding of metabolic function in the heart is a welcome advance. Murashige et al. measured more than 270 metabolites using liquid chromatography–mass spectrometry in human blood samples taken from an artery entering the heart and from a vein leaving it. Differences thus reflected the metabolic processes at work in the heart. Their results confirmed that hearts voraciously consume fatty acids. Hearts secreted, rather than consumed, amino acids, thus revealing active proteolysis. In patients with heart failure, ketone and lactate consumption increased, as did proteolysis. These findings could lead to strategies for fighting heart disease by altering metabolism.

Science, this issue p. 364

Abstract

The heart consumes circulating nutrients to fuel lifelong contraction, but a comprehensive mapping of human cardiac fuel use is lacking. We used metabolomics on blood from artery, coronary sinus, and femoral vein in 110 patients with or without heart failure to quantify the uptake and release of 277 metabolites, including all major nutrients, by the human heart and leg. The heart primarily consumed fatty acids and, unexpectedly, little glucose; secreted glutamine and other nitrogen-rich amino acids, indicating active protein breakdown, at a rate ~10 times that of the leg; and released intermediates of the tricarboxylic acid cycle, balancing anaplerosis from amino acid breakdown. Both heart and leg consumed ketones, glutamate, and acetate in direct proportionality to circulating levels, indicating that availability is a key driver for consumption of these substrates. The failing heart consumed more ketones and lactate and had higher rates of proteolysis. These data provide a comprehensive and quantitative picture of human cardiac fuel use.

Source

Continue Reading
Advertisement
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Science

Too bright to breed

Published

on

Night light from coastal cities overpowers natural signals for coral spawning from neighboring reefs.

PHOTO: NOKURO/ALAMY STOCK PHOTO

Most coral species reproduce through broadcast spawning. For such a strategy to be successful, coordination has had to evolve such that gametes across clones are released simultaneously. Over millennia, lunar cycles have facilitated this coordination, but the recent development of bright artificial light has led to an overpowering of these natural signals. Ayalon et al. tested for the direct impact of different kinds of artificial light on different species of corals. The authors found that multiple lighting types, including cold and warm light-emitting diode (LED) lamps, led to loss of synchrony and spawning failure. Further, coastal maps of artificial lighting globally suggest that it threatens to interfere with coral reproduction worldwide and that the deployment of LED lights, the blue light of which penetrates deeper into the water column, is likely to make the situation even worse.

Curr. Biol. 10.1016/j.cub.2020.10.039 (2020).

Source

Continue Reading

Science

SpaceX launches Starlink app and provides pricing and service info to early beta testers

Published

on

SpaceX has debuted an official app for its Starlink satellite broadband internet service, for both iOS and Android devices. The Starlink app allows users to manage their connection – but to take part you’ll have to be part of the official beta program, and the initial public rollout of that is only just about to begin, according to emails SpaceX sent to potential beta testers this week.

The Starlink app provides guidance on how to install the Starlink receiver dish, as well as connection status (including signal quality), a device overview for seeing what’s connected to your network, and a speed test tool. It’s similar to other mobile apps for managing home wifi connections and routers. Meanwhile, the emails to potential testers that CNBC obtained detail what users can expect in terms of pricing, speeds and latency.

The initial Starlink public beta test is called the “Better than Nothing Beta Program,” SpaceX confirms in their app description, and will be rolled out across the U.S. and Canada before the end of the year – which matches up with earlier stated timelines. As per the name, SpaceX is hoping to set expectations for early customers, with speeds users can expect ranging from between 50Mb/s to 150Mb/s, and latency of 20ms to 40ms according to the customer emails, with some periods including no connectivity at all. Even with expectations set low, if those values prove accurate, it should be a big improvement for users in some hard-to-reach areas where service is currently costly, unreliable and operating at roughly dial-up equivalent speeds.

Image Credits: SpaceX

In terms of pricing, SpaceX says in the emails that the cost for participants in this beta program will be $99 per moth, plus a one-time cost of $499 initially to pay for the hardware, which includes the mounting kit and receiver dish, as well as a router with wifi networking capabilities.

The goal eventually is offer reliably, low-latency broadband that provides consistent connection by handing off connectivity between a large constellation of small satellites circling the globe in low Earth orbit. Already, SpaceX has nearly 1,000 of those launched, but it hopes to launch many thousands more before it reaches global coverage and offers general availability of its services.

SpaceX has already announced some initial commercial partnerships and pilot programs for Starlink, too, including a team-up with Microsoft to connect that company’s mobile Azure data centers, and a project with an East Texas school board to connect the local community.

Source

Continue Reading

Science

Erratum for the Report “Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances” by R. Van Klink, D. E. Bowler, K. B. Gongalsky, A. B. Swengel, A. Gentile, J. M. Chase

Published

on

S. Rennie, J. Adamson, R. Anderson, C. Andrews, J. Bater, N. Bayfield, K. Beaton, D. Beaumont, S. Benham, V. Bowmaker, C. Britt, R. Brooker, D. Brooks, J. Brunt, G. Common, R. Cooper, S. Corbett, N. Critchley, P. Dennis, J. Dick, B. Dodd, N. Dodd, N. Donovan, J. Easter, M. Flexen, A. Gardiner, D. Hamilton, P. Hargreaves, M. Hatton-Ellis, M. Howe, J. Kahl, M. Lane, S. Langan, D. Lloyd, B. McCarney, Y. McElarney, C. McKenna, S. McMillan, F. Milne, L. Milne, M. Morecroft, M. Murphy, A. Nelson, H. Nicholson, D. Pallett, D. Parry, I. Pearce, G. Pozsgai, A. Riley, R. Rose, S. Schafer, T. Scott, L. Sherrin, C. Shortall, R. Smith, P. Smith, R. Tait, C. Taylor, M. Taylor, M. Thurlow, A. Turner, K. Tyson, H. Watson, M. Whittaker, I. Woiwod, C. Wood, UK Environmental Change Network (ECN) Moth Data: 1992-2015, NERC Environmental Information Data Centre (2018); .

Source

Continue Reading

Trending